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MEASUREMENTS GF MILLIMETER WAVE RADAR TRANSMISSION AND

BACKSCATTER DURING DUSTY INFRARED TEST II (DIRT 1D

I. INTRODUCTION

Recently there has been much interest expressed to determining the ability of
millimeter wave radar to perform target acquisition during degraded visibility condi-
tions. In this regard, one of the primary issues of concern has been the potential of
high-explosive artillery barrages to obscure the battlefield from millimeter wave radar
systems.  To address this issue, NV&EOL in conjunction with the Atmospheric
Sciences Lab (ASL) conducted 95-GHz millimeter wave radar measurements during
ASL’s Dusty Infrared Test II (DIRT ). This test was held at White Sands Missile
Range, NM, from 18-28 July 1979, Millimeter wave transmission and backscatter
measurcements were performed during singular live firings and static detonations of
155-m and 105-mm high-explosive artillery rounds in addition to static detonations of
C-4 explosives. A brief description of the millimeter wave portion of the test and
instrumentation is given. The data along with some preliminary conclusions are
presented.

II. TEST SITE

A layout of the test site relative to the millimeter wave transceiver is shown in
Figure 1. The radar was positioned at the northern end of the test site approximately
6 m west of the North Instrumentation Site (not shown in the figure). The North
Instrumentation Site and the South Instrumentation Site are the end points of the
optical path, a segment of which is depicted in Figure 1. CR(C1), CR(C2), and CR(C3)
are the positions of three corner reflectors having cross sections of 17.8 dbsm, 30.2
dbsm and 25.2 dbsm, respectively. Although not shown, additional corner reflectors
were positioned east and west of the beam center for orientation purposes. The beam
width of the millimeter wave antenna was 0.4° and the line in the figure connecting
the millimeter wave radar and CR(C2) represents the location in azimuth of the beam
center along the test range and is 2151.2 m long. The figure shows that the optical
path and the millimeter wave radar beam center intersect at approximately the center
of the optical path and that they diverge by no more than 0.05° in azimuth over the
region of interest. The Detonation/Impact Zone, also shown in Figure 1, is a region
from 1100 to 1260 m with an angular displacement of approximately -1° to +0.5°
about the beam center. This is the region into which the artillery fired and in which
the static rounds were detonated.
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Figure 1. Layout of the test site relative to millimeter wave transceiver.




A profile of the range from the millimeter radar to CReC) is shown in Figure 2.

The positions of the comer ieflectors within the beam are illustrated. The corner
reflectors CROCT) and CR(C2Y were positioned atop telescoping dielectric poles, the
heights of which were selected to ensure that thy main portion of the bearn did not
intercept the ground and result in spurious signals: L., multipath effects. CR(C3)
was placed on 22 July 79 in order to measure transmission along a different angular
position. The beam center which is the millimeter wave transmission path 1o CR(CD)
is 11.1 meters above the center of Detonation/Impact Zone and is detined as trans
mission path 2, whereas the trunsmission path to CR(C3) is 4.5 meters above the center
and is defined as transmission path 3.

Survey coordinates expressed in the White Sands Transverse Mercator designation
were provided by ASL. Using this survey data, azimuth angles. depression angles and
ranges relative to the millimeter wave radar were computed, plotted, and are shown in
Table 1.

It is appropriate to mention that the test site was relatively free of ciutter and the
corner reflectors employed provided excellent signal-to-clutter ratios.

I INSTRUMENTATION

The mobile millimeter wave measurements van on location at the test site is
shown in Figure 3. It is a self-contained facility housing two 95-GHz radars and two
computer-based data acquisition and reduction systems.

A block diagram and the specifications of the instrumentation radar used to make
the radar measurements are shown in Figure 4. 1t is a4 pulsed noncoherent rudar using
an Amperex 287 magnetron as the transmitter. It employs a superheterodyne receiver
with a temperature stabilized OKI Klystron as the local oscillator.  In the recciver
channel between the balanced mixer and the circulator, a direct-reading precision
attenuator (TRG Model No. 510) is located. This component enables the operator to
perform a calibration of the receiver and when used with a reference corner reflecror
provides absolute calibration in terms of cross section. The radar’s dynamic range is
determined by the intennediate frequency (IF) amplifier.  Amplifiers with dynamic
ranges of 60 dB und 15 dB were available for the test, The detected radar signal is
displayed using an A-scope and is also sent to the data acquisition systems (DAS).

A block diagram of the two NV&EOL data acquisition and reduction systems is
illustrated in Figure 5. As can be seen, the radar video is routed in parallel to DAS
No. 1 and DAS No. 2. DAS No. | is a minicomputer-based data acquisition system
having the following principal characteristics:
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Figure 2. Profile of the test range along the center of the millimeter wive beam.

D T TS
Figure 3. NV&EOL/DARPA mobile millimeter wave measurement
van on site during DIRT 11,
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Figure 4. Block diagram and specifications of the 95-GHz instrumentation radar.
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I, Operator interactive software,

2. Variable high-speed analog-to-digital converter with a maximum coverage off
1000-range cells per pulse.

3. Single-pulse or digital-integrated video data collection.
4. On-site statistical data reduction when survey data are avatlable.
5. IBM 360 compatible digital tape generation

In DAS No. 2, the radar video is first range gated and then integrated. The output
of the integrator is routed in parallel to both a strip-chart recorder and the microcom-
puter.

The range gate unit has a total of four continuously variable range gates.  Each
sange gate has four outputs corresponding to 0-, 0.01-, 0.1-, 1.0-s integration time con-
stants. The 0.1-s time constant was selected as a reasonable compromise between noise
reduction and response time.

The :astrumentation radar is maanually positioned in azimuth and elevation, The
system is mounted on a Hauser turnteble which provides a readout of the azimuth
angle to within an accuracy of 4 s. An clevation shaft encoder provides the depression
angle to within 0.05°.

A scanning 95-GHz radar was also used during this test to qualitatively observe
the backscatter from the exploding projectiles on a PPI display and to perform ground
mapping. The only differences in specifications between this radar and ihe instrumen-
tation radar are that it has an 45.7-cm (18-in.) parabolic antenna and it operates at a
frequency of 95.75 GHz. No interference was observed between the two radars when
they were operating simultancously. However, the use of the scanning radar was dis-
continued after the first day of testing when it was observed that the duration of
attenuation and backscatter effects was so brief that scanning became impractical.

e

IV. METHODOLOGY

Millimeter wave transmission and backscatter measurements were performed
during live firings and static detonations of 155-mm and 105-mm high-explosive
artillery projectiles as well as static detonations of C4 explosives. The tube-delivered
155-mm and 105-mm projectiles (designated Arty A and Arty B tests, respectively)
were fired singularly with the countdown for the next round beginning as soon as the
optical path returned to unity transmission. In this mannes, the firings of the high-
explosive projectiles were completed within one day.
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In Figure 6, the locations of the craters formed by the impacting rounds have
been drawn. The beam pattern of the millimeter wave antenna has been overlayed in
order to illustrate the location and dispersion of the impacting rounds during the milli-
meter wave measurements. (The identification of the craters is a best estimate based
on visual observation and backscatter data.)

The schedule of static detonations was announced daily: 155-mm and 105-mm
high-explosive projectiles and C4 explosives were detonated singularly (designated A,
B, and E tests, respectively) lying on or below the surface. In Figure 7, the locations
of the craters formed by the exploding rounds have been overlayed with the millimeter
wave antenna beam pattern.  As can be seen, the locations of the detonations were
systematically varied.  This was done to ensure that the exploding projectile/C4
generated its cloud from previously undisturbed soil and to measure the effects on pro-
pagation of the lateral displacement of the detonation from the optical path. The
Choice of an ecast or west displacement was made based on wind direction to ensure
that the resultant cloud drifted across the optical path.

At the start of cach day of testing, the instrumentation radar was made opera-
tional. The millimeter wave beam was aimed at CR(C2) and the radar echo was maxi-
mized. This was accomplished by adjusting the range gate position and the azimuth
and depression angles while monitoring the range gated video on the strip-chart
recorder.

Following this, the three remaining range gates of DAS No. 2 were positioned.
One range gate was positioned over CR(C3) in order to measure relative transmission
along path 3. Another was positioned over CR(C1) to monitor transmitter output
power, and the last was positioned over the center of the Impact/Detonation Zone
during live firings or the location of the projectile/explosive during static detonations
in order to measure backscatter.

DAS No. 1 was made operational simultaneously by calling up the data collection
programs on the minicomputer. The DAS was initialized to collect backscatter data
over the range from 800 to 2800 m for 10 s at 0. 1-s increments.

A countdown was initiated by the Test Conductor prior to each live firing or
detonation. it was during this period that a calibration of RF attenuation (in decibels)
versus strip-chart recorder deflection was performed. Another calibration was per-
formed immediately following the explosion. A representative example of these data
has been plotted in Figure 8. The DC-coupled Intermediate Frequency (IF) logarith-
mic amplifier and video detector were used during all data runs.
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Figure 6. Crater locations ot artillery-fired projectiles overlayed with the
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DIRT-1l CRATER LOCATIONS

e MM WAVE BEAM WIDTH
6 7 morgdi
N ;8
bt €7
SCALE 0 10 20 30 /
METERS /55 £6
Edgfp ¥
o 165 mm ARTILLERY IMPACTS 82/ N E.3
A 105mm ARTILLERY IMPACTS 2N
® STATIC CHARGE DETONATION 'y

B3

Figure 7. Crater locations of statically detonated projectiles/explosives
overlayed with the millimeter wave antenna beam pattern.
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V. DATA COLLECTION AND PRELIMINARY ANALYSIS

An A-scope display of the analog radar signal provided a real-time qualitative indi-
cation of the phenomenology associated with an explosion.  A-scope traces Lo,
backscatter versus the range relative to ground zero (GZ) - were video-tape recorded
and are shown in Figure 9 at Iss increments of time after detonation for tests A 4, A
and B, As can be seen, the debris, or cloud, which is generated by the explosion
and produces measurable backscatter extends for 30 to 45 m and moves in the direce-
ticn of the wind.

A calibrated digital version of an A-scope trace using DAS No. | was also pro-
duced and recorded during DIRT 11, The radar signal was sampled at 7.5-m intervals
along the test range from 900 m to 2500 m and digitized. The digitized signal was
integrated and then recorded at 0.1-s increments for 10 s during an explosion. Data
were recorded for the following tests:

ARTY B1 ARTY A3 Al3 Bo k1
ARTY B2* ARTY A7 Ald BS E2
ARTY B3* ARTY A8 AlS

ARTY B4* ARTY A9* Al2

ARTY B5* ARTY Al2 All

ARTY B8* ARTY Al3 A4

ARTY B12* ARTY Al4 A3

ARTY Bl4* ARTY AlS

ARTY BI15 :

These data are currently being analyzed. It had been planned originally to collect
data using DAS No. | for all tests conducted during DIRT II, but a series of power
interruptions at the test site caused the minicomputer to fail.

In Table 2, a chronological summary of the results of the millimeter wave
measurements performed during DIRT Il using DAS No. 2 and other pertinent infor-
mation are given. The maximum values of relative two-way attenuation recorded along
paths 2 and 3 and their respective recovery times have been listed. The recovery time
was defined as the time elapsed between detonation and the return of the millimeter
wave signal to the level prior to the explosion; i.e., 0 dB. The columns labeled ‘“‘back-
scatter” and “duration” list the maximum value of backscatter in decibels relative to
one square meter (dbsm) and the elapsed time during which backscatter was
measurable.

*Impact location was too far from centerline to produce useful data.
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Some further comments are necessary concerning Table 2. As was mentioned
carly, CR(C3) was positioned at a later date and thus there are no attenuation entries
for path 3 until 23 July. During the ARTY Al2 and A3 tests, the millimeter wave
beam was positioned one-halt beam width (BW) (i.e.. 0.2°) lower in elevation than for
any other test. No backscatter was measured to within the entered value of sensitivity
for the A13, B12, and Bl tests. The A6 test was an air burst positioned on the
centerline (CL) or optical path and was 5 feet above ground level.

The cloud or debris from an explosion produces a time-varying distributed array
of scatterers in the path of the millimeter wave radar. It is customary to present dis-
tributed clutter data such as this in terms of the surface reflectance (1n?®/m?). How-
ever, during the period that the scattering cross section was measurable, the radar beam
significantly over-resolved the cloud. At the time of writing. ¢loud size data were not
available and, therefore, the data are given in dbsm. Cloud size data will be available in
the final report on EIRT 11 to be published by ASL.

Examples of the data obtained using DAS No. 2 are given in Figures 10 through
16. These are copies of the original strip-chart recordings giving the relative two-way
transmission (in decibels) versus time in the vpper portion of each tigure and back-
scatter (in dbsm) versus time in the lower portion. These data were acquired using a
0.1-s integration time constant.

The backscatter and transmission data obtained for the ARTY AIlS (155-mm)
and ARTY B4 (105-mm) tests are presented in Figure 10. These were artillery-
delivered projectiles.  The values of backscatter and attenuation recorded for the
ARTY series of tests were dependent upon the range gote location (center of Impact
Zone). wind velocity, and impact location. Due to the distribution in location of the
impacting projectiles, care inust be excrcised when interpreting the results of the
ARTY series of tests. However, the value of peak backscatter and the mean duration
were greater for the ARTY A series (-16.5 dbsm, 3.25 5) than for the ARTY B scries
(-25.31 dbsm, 2.0 s) and negligible values of attenuation were recorded for either serics
along path 2.

Examples of the data obtained for surface and subsurface detonated 155-mm
projectiles are shown in Figures 11 and 12, respectively. In cach figure the data
obtained for various displicements relative to the beam center or centerline (CL) are
given. In examining the shape of the backscatter curve for detonation on the center-
line in Figure 12, it is apparent that the fast rise time resuits from the explosion hurling
debris (i.e., soil) into the air. The slower decay time results from the gradual return of
clumps of debris to the ground. The finer particles remain airborne longer but do not
have a significant effect on backscatter or transmission. In comparing the backscatter
curves obtained for detonation on the centerline with those for detonations displaced
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Figure 10. Transmission, backscatter vs. time for artillery-fired projectiles:
(a) 155-mm projectile, and (b) 105-mm projectile.
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Figure 11. Transmission, backscatter vs. time tor three surface-detonated 155-mm
projectiles at locations: (a) CL, (b) 10 m East of CL, and (c) 20 m East
of CL.
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Figure 12, Transmission, backscatter vs. time for three subsurface-detonated 155-mm projectiles at locations:
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tfrom the centerline. it is apparent that the rise time becomes slower and is dependent
on displacement.  This is attributed to the additional time required for the wind to
carry the explosive debris into the principal portion of the millimeter wave radar beam
on the centerline.

Examples of the data acquired tor 105-mm surfuce and subsurface-detonated
projectiles are given in Figures 13 and 14, respectively. Since there were negligible
values of attenuation and backscatter recorded when a 105-mm projectile was deto-
nated 20 m away from the centerline, data have not been included for this case. Trans-
mission data for both paths 2 and 3 have been shown with the data for path 3 being
displaced from the unity transmission line for clarity. The large variations in the values
of attenuation recorded for these two paths can be attributed to the nonhomogencity
of the resultant cloud. As would be expected. the cloud density varies inversely with
height above ground zero.

Examples of the data obtained for surface and subsurface-detonated C4 explo-
sives are presented in Figures 15 and 106, respectively, There were no millimeter wave
measurements perfornied during the detonation of C4 explosives positioned 20 m away
from the centerline and, therefore, no data have been shown for this case.

In Figure 17 the mean values of peak backscatter and duration for surface deto-
nations have been compared with those values obtained for subsurface detonations.
The dependence of backscatter and duration on displacement has also been illustrated.
From this figure two observations can be readily made:

1. The mean duration of the backscatter was greater for subsurface detonations
than for surface detonations of 155-mm and 105-mm projectiles.

2. On the average. significantly larger values of backscatter were measured
when a 155-inm or 105-mm projectile was detonated below the surface than when it
was detonated on the surface.

A listing of the average values of maximum two-way attenuation and the
associated recovery time have been shown in Table 3. Again a number of observations
can be readily made:

1. Larger values of two-way attenuation and associated recovery time were
measured when a 155-mm or 105-mm projectile was detonated beiow the surface than

those values which were measured when 4 projectile was detonated on the surface.

2. Negligible values of two-way attenuation were recorded when a projectile
was exploded only 10 m away from the beam center.
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2 and 3, path 3 which was 4.5 m above the ground had significantly farger values of

3 Whenever it was possible to make simultuncous measurements along paths

-

attenuation than path 2 which was 1.1 m above the ground.
Vi. SUMMARY

Tihe Atmospher’c Science Laboratory’s DIRT 11 test provided the opportunity to
perform 95 GHz millimeter wave radar transmission and backscatter measurcments
during singular live firings and static detonations of 155-mm and 105-mm high-explosive
projectiles. The tollowing summarizes the results:

1. The debrs, or cloud, which was generated by the explosion and produces
measurable backscatter. extends for 30 m to 45 m. and moves in the direction of the
wind.

2. The scattering cross section and attenuation associated with an explosion are
dependent upon the moisture content and type of the soil, whereas the duration and
recovery time are dependent upon the wind velocity.

3. The mean value of peak backscatter and the mean duration were greater tor
the ARTY A series(-16.5 dbsm, 3.2 s) than for the ARTY B serics (-25.31 dbsm, 2.0 s)
and negugible values of attenuation were recorded for both series.

4. The mean value of the peak backscatter and the mean duration were greater
for subsurface detonations than for surface detonations of 155-mm and 105-mm pro-
jectiles. On axis the mean value of peak backscatter and the mean duration measured
for 155-mm and 105-mm subsurface detonated projectiles were -2.7 dbsm for 6.75 s
and 1.81 dbsin for 6.1 s, respectively.

5. The mean value of two-way attenuation and the mean recovery time were
also greater for subsurface detonations than for surface detonations of 155-mm and
105-mm projectiles. The largest mean value of two-way attenuation and recovery time
measured for 155-mm and 105-mm detonated projectiles were 25.28 dB for 5.9 s and
10.1 dB for 2.23 s, respectively.

6. Negligible values of two-way attenuation were recorded when a projectile
was not exploded on the beam center.

7. Whenever it was possible to make simultaneous transmission measurements

along paths 2 and 3, path 3 which was 4.5 m above the ground had significantly larger
values of attenuation than path 2 which was 11.1 m above the ground.
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